Fucoidan promotes early step of cardiac differentiation from human embryonic stem cells and long-term maintenance of beating areas.

نویسندگان

  • Sofiane Hamidi
  • Didier Letourneur
  • Rachida Aid-Launais
  • Antonio Di Stefano
  • William Vainchenker
  • Françoise Norol
  • Catherine Le Visage
چکیده

Somatic stem cells require specific niches and three-dimensional scaffolds provide ways to mimic this microenvironment. Here, we studied a scaffold based on Fucoidan, a sulfated polysaccharide known to influence morphogen gradients during embryonic development, to support human embryonic stem cells (hESCs) differentiation toward the cardiac lineage. A macroporous (pore 200 μm) Fucoidan scaffold was selected to support hESCs attachment and proliferation. Using a protocol based on the cardiogenic morphogen bone morphogenic protein 2 (BMP2) and transforming growth factor (TGFβ) followed by tumor necrosis factor (TNFα), an effector of cardiopoietic priming, we examined the cardiac differentiation in the scaffold compared to culture dishes and embryoid bodies (EBs). At day 8, Fucoidan scaffolds supported a significantly higher expression of the 3 genes encoding for transcription factors marking the early step of embryonic cardiac differentiation NKX2.5 (p<0.05), MEF2C (p<0.01), and GATA4 (p<0.01), confirmed by flow cytometry analysis for MEF2C and NKX2.5. The ability of Fucoidan scaffolds to locally concentrate and slowly release TGFβ and TNFα was confirmed by Luminex technology. We also found that Fucoidan scaffolds supported the late stage of embryonic cardiac differentiation marked by a significantly higher atrial natriuretic factor (ANF) expression (p<0.001), although only rare beating areas were observed. We postulated that absence of mechanical stress in the soft hydrogel impaired sarcomere formation, as confirmed by molecular analysis of the cardiac muscle myosin MYH6 and immunohistological staining of sarcomeric α-actinin. Nevertheless, Fucoidan scaffolds contributed to the development of thin filaments connecting beating areas through promotion of smooth muscle cells, thus enabling maintenance of beating areas for up to 6 months. In conclusion, Fucoidan scaffolds appear as a very promising biomaterial to control cardiac differentiation from hESCs that could be further combined with mechanical stress to promote sarcomere formation at terminal stages of differentiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-74: Effect of Fndc5 Overexpression onCardiac Differentiation Rate of mESCs

Background: Fibronectin type III domain-containing 5 proteins (Fndc5), an exercise hormone, formerly known as peroxisomal protein that was cloned in 2002. Transcript profile analysis of Fndc5 revealed high degree of expression in heart, skeletal muscle and brain. Our recent studies indicated a significant increase (approximately 10 folds) in mRNA level of Fndc5 when mouse embryonic stem cells w...

متن کامل

Comparison of BAX and Bcl-2 Expression During Human Embryonic Stem Cell Differentiation into Cardiomyocytes and Doxorubicin-induced Apoptosis

Back ground: Although the cell differentiation is an inseparable part of development in multicellular organisms, the regulating molecular pathway of it still is not fully defined. In the other hand, apoptosis is a fundamental physiological process which plays an essential role in a variety of biological events during development. Moreover, recent studies have found that apoptosis shows several ...

متن کامل

بررسی بیان ژن‌های اختصاصی کاردیومیوسیت‌های اولیه در اجسام جنینی سیستم قلبی-عروقی

Background and Objective: Human embryonic stem cells (hESCs) can differentiate in vitro into spontaneously contracting cardiomyocytes and produce a model to investigate the early developmental stages of this system. After removing of cells from their feeder layer, hESCs create embryoid bodies (EB). Plating of EB results in developing areas of beating cells. In the present study, cardiomyocyte g...

متن کامل

Evaluation of Chronotropic Properties of Mouse Embryonic Stem Cells-Derived Cardiomyocytes After Fibroblast Growth Factor Treatment

Purpose: We investigated the effect of (bFGF) (basic-Fibroblast Growth Factor) on the differentiation of divided cardiomyocytes from mouse embryonic stem cells (ES) and their pharmacological properties. Materials and Methods: The mouse embryonic stem cells (Royan B1) were cultured as 800 cells per 20µl of a hanging drop. After two days, ES cells in each drop aggregated to form embryoid bodies ...

متن کامل

The Effect of Astrocyte-Conditioned Medium (ACM) and Retinoic Acid on Neural Differentiation of Mouse Embryonic Stem Cells

Purpose: The aim of this research was to study the properties of factors secreted from astrocyte cells in suspension medium in direct differentiation of mouse embryonic stem cells into neural cells. Materials and Methods: Royan B1 mouse embryonic stem (ES) cells were used in this experiment. For differentiation of Es cells into the neural cells, the astrocyte-condition medium (ACM) of mouse fe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Tissue engineering. Part A

دوره 20 7-8  شماره 

صفحات  -

تاریخ انتشار 2014